Pre-emptive Quality Control Protects the ER from Protein Overload via the Proximity of ERAD Components and SRP.
نویسندگان
چکیده
Cells possess ER quality control systems to adapt to ER stress and maintain their function. ER-stress-induced pre-emptive quality control (ER pQC) selectively degrades ER proteins via translocational attenuation during ER stress. However, the molecular mechanism underlying this process remains unclear. Here, we find that most newly synthesized endogenous transthyretin proteins are rerouted to the cytosol without cleavage of the signal peptide, resulting in proteasomal degradation in hepatocytes during ER stress. Derlin family proteins (Derlins), which are ER-associated degradation components, reroute specific ER proteins, but not ER chaperones, from the translocon to the proteasome through interactions with the signal recognition particle (SRP). Moreover, the cytosolic chaperone Bag6 and the AAA-ATPase p97 contribute to the degradation of ER pQC substrates. These findings demonstrate that Derlins-mediated substrate-specific rerouting and Bag6- and p97-mediated effective degradation contribute to the maintenance of ER homeostasis without the need for translocation.
منابع مشابه
ERAD ER-associated degradation FPP farnesyl pyrophosphate HMGR 3-hydroxy 3-methylglutaryl-CoA reductase HRD HMG-CoA reductase degradation SCAP SREBP cleavage-activating protein UBC ubiquitin-conjugating enzyme UPR unfolded protein response Introduction: degradation for quality control or regulation
The ER-associated degradation (ERAD) pathway directs ubiquitin-mediated degradation of a variety of ER-associated misfolded and normal proteins. Recent studies have delineated the molecular machinery responsible for protein ubiquitination and highlighted mechanistic questions surrounding the recognition, extraction and proteasomal destruction of the diverse array of ERAD substrates. Considerati...
متن کاملHrd1 and ER-Associated Protein Degradation, ERAD, are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes.
RATIONALE Hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (Hrd1) is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated degradation (ERAD) of misfolded proteins that accumulate during ER stress. Neither Hrd1 nor ERAD has been studied in the heart, or in cardiac myocy...
متن کاملEndoplasmic reticulum-mediated protein quality control in Arabidopsis
A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of secretory and membrane proteins, allowing expo...
متن کاملConserved endoplasmic reticulum-associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is an integral part of the ER quality-control system that removes toxic misfolded proteins via ubiquitin/proteasome-mediated degradation. Most of our knowledge on ERAD comes from biochemical and genetic studies in yeast and mammalian cells. Although ERAD is known to operate in plant cells, little is known about its molecular components an...
متن کاملBypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1
Trimming of mannose residues from the N-linked oligosaccharide precursor is a stringent requirement for glycoprotein endoplasmic reticulum (ER)-associated degradation (ERAD). In this paper, we show that, surprisingly, overexpression of ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) or its up-regulation by IRE1, as occurs in the unfolded protein response, overrides this requiremen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell reports
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2015